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ABSTRACT 

A tenet of ecology is that temporal variability in ecological structure and processes tends to 

decrease with increasing spatial scales (from locales to regions) and levels of biological 

organization (from populations to communities). However, patterns in temporal variability across 

trophic levels and the mechanisms that produce them remain poorly understood. Here we 

analyzed abundance time series of spatially structured communities (i.e., metacommunities) 

spanning basal resources to top predators from 355 freshwater sites across three continents. 

Specifically, we used a hierarchical partitioning method to disentangle the propagation of 

temporal variability in abundance across spatial scales and trophic levels. We then used 

structural equation modeling to determine if the strength and direction of relationships between 

temporal variability, synchrony, biodiversity, and environmental and spatial settings depend on 

trophic level and spatial scale. We found that temporal variability in abundance decreased from 

producers to tertiary consumers but did so mainly at the local scale. Species population 

synchrony within sites increased with trophic level, whereas synchrony among communities 

decreased. At the local scale, temporal variability in precipitation and species diversity were 

associated with population variability (linear partial coefficient, β  = 0.23) and population 

synchrony (β  = -0.39) similarly across trophic levels, respectively. At the regional scale, 

community synchrony was not related to climatic or spatial predictors, but the strength of 

relationships between metacommunity variability and community synchrony decreased 

systematically from top predators (β  = 0.73) to secondary consumers (β  = 0.54), to primary 

consumers (β  = 0.30) to producers (β  =0). Our results suggest that mobile predators may often 

stabilize metacommunities by buffering variability that originates at the base of food webs. This 

finding illustrates that the trophic structure of metacommunities, which integrates variation in 
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organismal body size and its correlates, should be considered when investigating ecological 

stability in natural systems. More broadly, our work advances the notion that temporal stability is 

an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss 

and habitat fragmentation. 

 

Keywords: compensatory dynamics; International long term ecological research (ILTER); 

metacommunities; mobile consumers; Moran effect; portfolio effect; community synchrony; 

temporal variability 
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INTRODUCTION 

The temporal variability of ecological attributes (e.g., population biomass) tends to decrease with 

increasing spatial scale and levels of biological organization (Kéfi et al. 2019, Hammond et al. 

2020). For instance, fluctuations in fishery catch at the metapopulation level are often weaker 

than in any one of the constituent local populations (Schindler et al. 2010). Similarly, organismal 

abundance at a given patch tends to be more stable at the community than the population level 

(Doak et al. 1998). However, most previous attempts to understand temporal variability and its 

drivers have focused on single trophic levels (Kéfi et al. 2019, Danet et al. 2021, Xu et al. 2021), 

and we cannot yet generalize if these patterns hold across trophic levels. Communities are 

connected through the spatial flow of organisms in different trophic levels (Leibold and Chase 

2018), and the spatial structure of multitrophic- level metacommunities may modulate their 

temporal variability (Firkowski et al. 2022). For example, mobile consumers may buffer 

temporal variability of an entire metacommunity if they forage across, and thus link, 

heterogeneous resource patches that have asynchronous dynamics (McCann et al. 2005). 

Understanding how temporal variability propagates not only across spatial and organizational 

scales, but also along trophic levels, would increase realism in models of metacommunity 

dynamics, and could help identify controls on ecosystem stability. 

 A hierarchical framework for understanding temporal variability in metacommunities 

was recently formalized (Wang et al. 2019). This framework assumes that fluctuations in species 

populations within sites represent the lowest-level component of temporal variability – i.e., 

population variability. The amount of population variability that propagates to the aggregate 

community level is determined by the amount of synchrony (i.e., correlated fluctuations) that 

exists across the different populations within local communities (Thibaut and Connolly 2013). In 
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turn, metacommunity variability emerges from both aggregate community variability and spatial 

synchrony among local communities (Wang et al. 2019). By virtue of this scaling, temporal 

variability tends to decrease as ecological properties are aggregated from local populations to 

metacommunities.  

The propagation of temporal variability across spatial scales and levels of organization 

has been explained, thus far, by mechanisms operating either at local or regional scales. At local 

scales, aggregate ecological properties tend to be more stable in more diverse communities due 

to statistical averaging among species that fluctuate independently through time (Schindler et al. 

2015). Negative covariance in the abundances of different populations caused by biotic and 

abiotic interactions reduces temporal variation in aggregate ecological properties (Gonzalez and 

Loreau 2009). Higher diversity can also indirectly increases the chance of compensatory 

dynamics, unless species are highly functionally redundant – with more species, there will be a 

broader range of responses to environmental variation (Mori et al. 2013). At the regional scale, 

ecological attributes (e.g., metacommunity total biomass) will vary more if spatially separated 

communities are synchronized, either via correlated fluctuations in the environment (i.e., Moran 

effect; Steiner et al. 2013) or via a combination of strong dispersal and predator-prey cycles (Fox 

et al. 2011). Notably, while organismal trophic position is generally positively associated with 

body size, lifespan, and dispersal strength (Peters 1983), we cannot yet generalize regarding the 

relationship between trophic position and environmental variation is mixed. Some have found 

that species at higher trophic levels are more sensitive to environmental change (Voigt et al. 

2003, Thackeray et al. 2016, da Silva et al. 2023), but others have reported the opposite (Hu et al. 

2022). Thus, the trophic structure of a metacommunity may determine the magnitude and drivers 

of its temporal variability—a hypothesis that has not been robustly tested.  
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Mobile consumers at higher trophic levels can stabilize the temporal dynamics of 

metacommunities by coupling heterogeneous local food webs in space (McCann et al. 2005, 

Rooney et al. 2008). This second hierarchical framework assumes that larger organisms tend to 

be at higher trophic levels, are highly mobile across the landscape, and leave low prey density 

patches for more profitable high-density patches (Eveleigh et al. 2007). Within a large ecosystem 

or metacommunity, the spatial coupling of heterogeneous local food webs guarantees a 

continuous supply of resources of different quality to mobile predators, making their temporal 

dynamics more stable. Such dynamics can also promote regional stability of resources as spatial 

heterogeneity in predation pressure can reduce synchrony across space of organisms at lower 

trophic levels (Howeth and Leibold 2013). Merging these two views (Rooney et al. 2008, Wang 

et al. 2019) may offer new opportunities to test hypotheses about how diversity, environmental 

fluctuations, and dispersal interact with trophic levels to influence the propagation of temporal 

variability across space and across levels of ecological organization (Danet et al. 2021).  

We compiled 30 temporal datasets on annual metacommunity dynamics spanning four 

trophic levels, from basal resources (e.g., phytoplankton) to top predators (e.g., piscivorous fish), 

comprising spatially replicated interannual time series sampled from 355 freshwater sites across 

three continents (Appendix S1: Figure S1). Based on temporal variability properties of both 

hierarchical frameworks of temporal variability, we hypothesized that (H1) temporal variability 

in abundance decreases with trophic position, as top consumers should buffer variability 

originating at the base of the food web. This hypothesis is based on the idea that top mobile 

consumers may couple different local food webs characterized by both fast energy channels 

exhibiting mostly of strong interactions and slow channels exhibiting mostly weak interactions 

(Rooney et al. 2006). Alternatively (H1’), higher trophic levels could exhibit stronger 
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fluctuations in population abundance if environmental and demographic stochasticity 

disproportionally affect taxa with larger body size—a pattern that is also plausible given larger-

bodied taxa tend to have relatively smaller population sizes and longer generation times (and 

thus, lower capacity to recover quickly after disturbance) (Sousa 1984, Lande 1993).  

Additionally, we hypothesized that (H2) species population synchrony within sites 

increases with trophic level, whereas spatial synchrony among communities decreases, as top 

mobile consumers may aggregate in heterogeneous resource patches through time. This 

hypothesis is supported by the idea that tracking heterogeneous resources should increase 

variability in the time that top consumers occupy a patch, which should decrease spatial 

synchrony in resources at the regional scale and increase local predator synchrony (Vasseur and 

Fox 2009). Alternatively (H2’), if top-down rather than bottom-up forces predominate, a high 

abundance of mobile, top consumers could synchronize fluctuations in their resources, leading to 

an increased, rather than decreased, population synchrony levels at the base of the food web 

(relative to its top).  

Finally, we tested if the strength and direction of relationships between temporal 

variability, synchrony, diversity, and environmental and spatial settings depend on trophic level 

and spatial scale (Appendix S1: Figure S2). We hypothesized (H3a) a stronger role of 

environmental control in primary producer population variability and synchrony at the local 

scale, as their dynamics would be less affected by the spatial coupling of mobile top consumers, 

and (H3b) a stronger role of spatial connectivity on top consumer spatial synchrony and 

metacommunity variability at the regional scale. Alternatively, (H3a’) environmental controls 

could operate mostly at large spatial scales, synchronizing spatially-structured patches across 

regions (e.g., via flooding or regional drought; (Ruhi et al. 2018, Sarremejane et al. 2021)); and 
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(H3b’) strong dispersal in the lower trophic levels could maintain resource synchrony even if 

patches are isolated (e.g., via mass effects; Vanschoenwinkel et al. 2008, Abbott 2011). 

We used the hierarchical partitioning framework proposed by Wang et al. (2019) applied 

to metacommunities to test hypotheses H1 and H2. Next, we used structural equation modelling 

(SEM) applied to variability and synchrony components measured at two spatial scales to test 

hypothesis H3. 

 

METHODS 

Datasets 

We collated 30 independent metacommunity datasets, comprising spatially replicated annual 

counts of individual species (or genera) spanning those representing basal resources (e.g., 

phytoplankton) to top predators (e.g., piscivorous fish) across different geographies and climates 

of the globe (Appendix S1: Figure S1). When the original data included multiple sampling 

events per year, we selected the summer month with the highest number of sites sampled. Each 

dataset contained one sample per year from at least 4 sites (max. = 30; mean = 11.83; median = 

11.50) sampled for at least 5 years (max. = 30; mean = 11.93; median = 10). We only used data 

on metacommunities in which local communities were physically connected (e.g., multiple sites 

per lake; multiple streams within a catchment). Our data included a mix of 5 lentic (lakes) and 25 

in lotic (streams and rivers) metacommunities, but none of the relationships differed between 

lotic and lentic ecosystems (Appendix S1: Figure S3 and S4). A summary of each dataset and a 

detailed description of the procedures used in data filtering can be found in Appendix S1. Data 

and code are available in Siqueira et al. (2023). 
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Each species was assigned to one trophic category: producers (including stream benthic 

algae, macrophytes, and phytoplankton; 23 site-level time series after filtering, see below), 

primary consumers (zooplankton [Cladocera and Copepoda], macroinvertebrates, and fish; 97 

site-level time series), secondary consumers (macroinvertebrates and fish; 208 site-level time 

series), and tertiary consumers (piscivorous fish; 173 site-level time series). We then reorganized 

the original datasets into trophic-level-specific metacommunities. For example, an original 

dataset on fish could be subdivided into three data tables: one with primary consumers only, one 

with only secondary consumers, and another with only tertiary consumers. This reorganization of 

data resulted in 54 data tables representing individual metacommunities (producers = 4; primary 

consumers = 13; secondary = 22; tertiary = 15). We removed unidentified taxa and taxa 

identified at a level higher than genus from all datasets. Finally, we removed sites with only 1 

species, resulting in 501 sites (the same site could be part of more than one data table) and 49 

trophic-level-specific metacommunities for analysis.  

We recognize our trophic level categorizations are somewhat simplistic as we did not 

consider omnivory or variation in feeding strategies within a particular group. However, failing 

to simplify the data in this manner would have resulted in many combinations of 

metacommunities and trophic levels, most without any replication or full representation of 

temporal and spatial sampling. As we aimed to investigate relationships that are theoretically 

expected along a complex gradient of trophic levels (Vander Zanden and Fetzer 2007) and 

dispersal capacity (Rooney et al. 2008), we believe our strategy represents a useful compromise.  

The original metacommunity datasets differed in in terms of what and how many trophic 

levels were included, with 22 datasets including information on more than one trophic level. We 

explicitly considered potential artifacts associated with variation inherent to the original data by 
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pursuing four strategies. First, we estimated all variables relevant to our analyses (e.g., local 

diversity, population synchrony) for each of the 49 trophic-level-specific metacommunities. 

Second, we used mixed-effects models both to quantify the relationships between response and 

predictor variables in structural equation modeling (details below), and to test the effect of 

potential confounding variables on variability and synchrony (e.g., number of sites; details 

below). Third, we compared variability and synchrony metrics among trophic levels for a subset 

of the data that included more than one trophic level, by conducting paired t-tests in which 

dataset identity was used as a blocking factor. In this case, paired t-tests are equivalent to both a 

linear mixed model with random intercepts and a simple linear fixed effects model with varying 

intercepts – i.e., they result in the same treatment test statistic. Two datasets included information 

on primary to tertiary consumers, while seven and thirteen datasets included information on 

primary to secondary and secondary to tertiary consumers, respectively. Fourth, we ran a 

sensitivity analysis to assess the potential effect of the number of sites per metacommunity and 

time series length on estimates of variability and synchrony metrics (see details below). Because 

the number of generations represented in each time-series differed among trophic levels 

(particularly between producers and the consumer groups), we included the median number of 

generations sampled as a predictor in structural equation models (see details below) and in 

individual mixed effects models (one per response variable; Appendix S1). 

     

Metacommunity variability partitions across scales and levels 

 To test hypotheses H1 and H2, we first partitioned temporal variability in total 

metacommunity abundance into its lower-level components for each of the 49 trophic-level-

specific metacommunities. For this analysis, we used the framework proposed by (Wang et al. 
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2019) that allows partitioning the variability of total metacommunity abundance (Mv) into two 

components – temporal variability of local community abundance (Cv) and synchrony across 

those local communities (Csy). Cv was further partitioned into the variability of individual 

population abundances within sites (Pv) and synchrony across those local populations (Psy). 

Thus, Mv = Cv x Csy = (Pv x Psy) x Csy. Temporal variability at a given level was defined as 

the coefficient of variation in abundance across years, where Cv was expressed as the weighted 

(by the temporal mean) average of community variability across sites and Pv was expressed as 

the weighted average of local population variability across species and patches. Csy was 

calculated as the annual variance of metacommunity abundance divided by the sum of temporal 

standard deviations of local community abundance. Species population synchrony was calculated 

as the annual variance of community abundance divided by the squared sum of the standard 

deviations of constituent species’ abundances. Psy was expressed as the weighted average of 

species synchrony across patches (see Wang et al. 2019 for equations). Thus, there was one value 

of Mv, Cv, Pv, Csy, and Psy per each of the 49 trophic-level-specific metacommunities. 

 We modeled partition values as a function of trophic and organizational levels with linear 

models. We used estimated marginal means and specific pairwise contrasts corrected for 

multiple comparisons (Holm adjustment) to compare trophic levels when there was a relationship 

between variability or synchrony with trophic levels because we were interested in differences 

among trophic levels. To do that we used the package emmeans (Lenth et al. 2022) in the R (R 

Core Team 2021).  

 

Sensitivity analysis  
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Because individual datasets differed in number of sites and years sampled, and previous studies 

showed these differences can affect population variability estimates, we tested if variation in 

time series length, average number of generations per trophic level (see Appendix S1), and site 

replication could have influenced the observed patterns. We ran two sensitivity analyses in which 

variability and synchrony were estimated for metacommunities with only 8 sites and with only 

11 years. First, we selected all datasets with more than 7 sites (the maximum number of sites for 

the trophic group with the minimum number of sites) and sampled 8 sites randomly from each 

one of them. We repeated this process 1000 times and estimated the variability and synchrony 

metrics each time. We averaged these 1000 values and compared these "rarefied" estimates with 

the estimates obtained based on the full data. To assess the potential effect of time series length 

on variability and synchrony estimates, we used a standardized reduced time series – 11 years 

only (the maximum number of years for the trophic group with the minimum number of years). 

We did not rarefy time series length (but truncated raw time series), as we wanted to preserve the 

time series nature of the population and community data.   

 

Two-scale structural equation modelling 

We used local estimation structural equation modeling (SEM) (Shipley 2000) to test if 

the direct and indirect relationships among diversity, environmental and spatial predictors, 

variability and synchrony, trophic levels at two spatial scales were consistent with H3a-b. We 

fitted different models following our hypotheses but using different variables to represent the 

direct and indirect relationships. For example, we represented the direct path between local 

environmental variability and population variability by using temperature seasonality in one 

candidate model and precipitation seasonality in another (see explanation and justification of 
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environmental and spatial predictors below). We used AICc, model weight and delta AICc to 

compare alternative models. When different models were equally plausible (i.e., delta AIC < 2), 

we chose the one with higher total R2 value and more randomly distributed residuals. 

We performed multigroup SEM analysis (Lefcheck 2016) to test whether the 

relationships among predictor and response variables varied between trophic groups. Multigroup 

SEM can be thought as an Analysis of Covariance (ANCOVA). For example, consider the 

following model: population synchrony ~ local diversity * trophic level. If there is an interaction 

between the two predictor variables, we should interpret the relationship between population 

synchrony and local diversity (standardized coefficient) separately for each trophic level. When 

that was the case, we represented the graphed multiple pathways with distinct colors to indicate 

that the relationship between a response and a predictor variable depended on trophic level. 

We used two independent SEMs to maximize the statistical power of our test. First, we 

applied SEM to metacommunity partitions (regional-scale SEM; n = 49 trophic-level-specific 

metacommunities). Then, we applied SEM to variability and synchrony metrics estimated at the 

local scale, i.e., for individual sites within the trophic-level-specific metacommunities (local-

scale SEM; n = 501).  

To estimate variability and synchrony metrics at the local scale, we used the same 

equations as in Wang et al. (2019), but without averaging variability or synchrony across sites. 

Therefore, the temporal variability of aggregate community abundance at each site (Cv_local) 

was defined as the coefficient of variation of summed species abundance within the site. We 

estimated Cv_local independently for each of the 49 trophic-level-specific metacommunities and 

obtained one value of Cv_local per site. For the local scale, we also partitioned community 

variability into its lower components: population variability within sites (Pv_local), defined as 
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the weighted average CV of population abundance of the species present within the local 

community, and synchrony among those local populations within sites (Psy_local), defined as 

the synchrony in abundance among the species present within the local community. The two 

SEMs were conceptually linked by community variability. However, for the local-scale SEM 

community variability was estimated for each site (Cv_local), whereas for the regional-scale 

SEM, it was averaged within each metacommunity (Cv). 

For the regional-scale SEM, we fitted Gaussian linear mixed models with the response 

and predictor variables, with metacommunity identity as a random effect. Regional diversity was 

dropped from the model, and variability and synchrony were log-transformed prior to analyses to 

better approximate linear relationships. For the local-scale SEM, we fitted the response and 

predictor variables with Gaussian linear mixed effects models and considered metacommunity 

identity and a variable identifying the trophic-level-specific metacommunity as random effects. 

Model fit and evaluation followed the same procedures as for the regional-scale SEM. For the 

local-scale SEM, we also included average number of generations sampled per site as an 

explanatory variable for population variability because exploratory analyses indicated that the 

number of generations sampled differed between producers and the other levels (Appendix S1: 

Table S1) and that variability metrics were sensitive to it (Appendix S1: Figure S5). The 

goodness of fit of each SEM was evaluated with a test of directed separation (Fisher’s C statistic; 

alpha ≥ 0.05). The SEMs were fitted with lme4 (Bates et al. 2015) and piecewiseSEM (Lefcheck 

2016) in R. 

 

Environmental and spatial predictors 
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For the local-scale SEM, we used measures of overall temporal variability in temperature 

and precipitation as predictors of population variability. We expected that more variable sites 

would have lower levels of population variability across years, as species may be more tolerant 

to the wider environmental fluctuations present in any given year and because we only used 

biological data from summer months. Local, direct measures of thermal and hydrologic regimes 

would have been ideal, but these data were not universally available. We therefore gathered data 

on average variability in temperature and precipitation (bio4 and bio15, respectively) data from 

the WorldClim database (Fick and Hijmans 2017). Variability in temperature is calculated as the 

standard deviation of monthly temperatures within a year × 100, whereas variability in 

precipitation is the coefficient of variation of monthly precipitation within a year.  

Air temperature has been shown to be a good proxy for water temperature – particularly 

in systems not strongly affected by snowmelt (Stefan and Preud’homme 1993, Mohseni and 

Stefan 1999). Differences in air temperature can potentially affect food web dynamics, by for 

example, affecting metabolic rates and the demand for food resources (Hunt et al. 2017). 

Similarly, precipitation is a primary predictor of stream flow or lake volume, and differences in 

flooding and drying can also affect food webs (e.g., Greig et al. 2013, Jellyman and McIntosh 

2020). For example, floods mediate the strength of stream trophic cascades by decreasing algal 

abundance and removing defended herbivores (McIntosh 2022). Also, under scenarios of 

reduced precipitation, lotic systems might suffer from reduced hydrological connectivity, which 

can influence food-web structure via decreases in species diversity (Rosset et al. 2017). 

Two measures of the synchrony among sites in mean maximum and mean minimum 

temperature and precipitation were used as predictors in the regional-scale SEM. We used ~4 km 

resolution temperature and precipitation data from the TerraClimate database, a monthly 
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generated product of climate and climatic water balance for global terrestrial surfaces for the 

period 1958 – 2015 (Abatzoglou et al. 2018). We extracted monthly mean values at the spatial 

coordinates of the sampling sites from 1958 to the last year in which communities were sampled 

within each dataset. Spatial synchrony in temperature and in precipitation was then estimated as 

the mean Kendall rank correlation across years between each pair of sites. One metacommunity 

had all values of spatial synchrony set to 1 because its spatial extent was lower than 4 km2. We 

decided to include seven decades of data instead of restricting the data to ensure we accurately 

characterized temporal environmental variation across sites.  

For the regional-scale SEM, we also estimated one metric of spatial connectivity, 

network closeness centrality (Erős et al. 2012) and used it as a predictor of community 

synchrony. Closeness centrality was calculated for each site within a metacommunity as the sum 

of the length of the shortest paths between the site and all other sites in the metacommunity. The 

more central a site is, the closer it is to all other sites. Considering that our data were 

heterogeneous with regards to Euclidean vs watercourse connectivity (connected river networks 

vs. sites within lakes), all sites within a metacommunity were considered connected and only the 

Euclidean spatial distances between them were included as weights between each pair of sites. 

This procedure resulted in one value of distance-weighted closeness for each site within each 

metacommunity, which were averaged so that we had a value of closeness for each 

metacommunity. Thus, metacommunities with higher values of closeness centrality had shorter 

Euclidean paths among their sites. 

 

RESULTS 

Metacommunity variability partitions across scales and levels 
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Temporal variability in abundance generally decreased with increasing trophic level 

(F3,135 = 47.69, p = 2.2e-16, Figure 1a) and with spatial scale (F2,135 = 75.47, p = 2.2e-16; R2 of 

the global model = 0.69), as hypothesized (H1). However, pairwise contrasts indicated that while 

population variability differed among all trophic levels, community variability did not differ 

between producers and primary consumers, and metacommunity variability of producers was 

higher than that of secondary and tertiary consumers (Appendix S1: Table S2). Thus, in general, 

temporal variability of tertiary consumers was lower than that of producers and primary 

consumers—from local populations to regional metacommunities. These general patterns were 

similar but weaker when we analyzed temporal variability only within datasets that included 

more than one trophic level (22 datasets encompassing 300 sites; Figure 2a). When we used 

dataset identity in paired t-tests, both population and community variability decreased only from 

secondary to tertiary consumers (Appendix S1: Table S3).  

In support of hypothesis H2, we found that synchrony depended on an interaction 

between trophic level and spatial scale (F3,90 = 9.67, P = 0.000013). While population synchrony 

(i.e., synchrony among populations within sites) generally increased from producers to tertiary 

consumers (all pairwise contrasts differed from each other, except between primary and 

secondary consumers; Appendix S1: Table S4), community spatial synchrony (i.e., among 

communities across sites) decreased from primary to secondary and tertiary consumers (Figure 

1b; Appendix S1: Table S4). Paired t-tests, which blocked dataset identity, partially confirmed 

these general results (Figure 2b). While there was no difference between population and 

community synchrony for primary consumers, population synchrony was higher than community 

synchrony for both secondary and tertiary consumers (Appendix S1: Table S3).  
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Sensitivity analyses 

Although variability metrics were often positively related to the number of generations sampled 

and negatively related to the number of site replicates, none of these relationships showed a 

statistical interaction with trophic level (Appendix S1: Figure S5 and S6). This observation 

suggests that sampling heterogeneity effects were consistent across trophic levels and thus 

unlikely to generate a spurious “propagation effect”. The sensitivity analyses with resampled 

sites and reduced time steps in the time series resulted in the same patterns described above for 

the whole dataset (see Appendix S1: Figure S7 – S9 for details), confirming that variation in time 

series length or site replication did not drive propagation patterns.  

 

Drivers of temporal variability  

Only one local-scale structural equation model (local-scale SEM) had a good fit in 

multigroup analysis (Fisher’s C = 3.376, df = 4, p-value = 0.49) and thus no model selection was 

necessary. This local-scale SEM indicated that the strength of the positive relationship between 

community variability and population variability varied among trophic levels, partially 

supporting H3 (Figure 3). As we are not aware of any statistical method that compares 

multigroup coefficients in SEM a posteriori, we interpret these differences among trophic levels 

qualitatively. Producers displayed the highest standardized coefficient (0.71; see Appendix S1: 

Table S4 for detailed model statistics) for the path linking population to community variability. 

The coefficients for this same path were much lower and more similar among consumers (0.34-

0.45). The path coefficient linking species population synchrony to community variability (0.58) 

did not vary among trophic levels (Appendix S1: Table S5). Additionally, we observed the 

expected negative relationship between species population synchrony and local species richness, 
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which did not vary among trophic levels (-0.39; Figure 3). However, contrary to our predictions, 

the positive relationship between population variability and variability in precipitation did not 

vary among trophic levels (0.23; Figure 3). Variability in precipitation slightly influenced 

secondary and tertiary consumers in opposite ways, but we note this direct path was not part of 

our conceptual model and was included a posteriori to improve model fit. The number of 

generations sampled was positively related to population variability (0.30; Figure 3) and 

negatively related to population synchrony (-0.20; Figure 3). Although these relationships did not 

vary among trophic levels (Appendix S1: Table S5), for community variability, the interaction 

between number of generations and trophic levels was associated with a p-value close to 5% 

(0.067). We thus further investigated this potential issue by using an Akaike information 

criterion corrected for small sample size (AICc) to compare models with and without an 

interaction between number of generations sampled and trophic levels. This exercise indicated 

that in all cases (population variability, population synchrony, and community variability), 

models without the interaction (i.e., ‘additive’ models) were substantially better supported than 

models with the interaction (Appendix S1: Table S6).    

Three regional-scale SEMs fitted the data well, and two of them had delta AIC values smaller 

than 2 (Appendix S1: Table S7). We interpreted the one with the highest R2 values. This 

regional-scale SEM indicated that the strength of the positive relationships between 

metacommunity variability and community variability, and between metacommunity variability 

and spatial synchrony, varied among trophic levels, and in both cases were null for producers 

(Figure 3). While the strength of the relationship between metacommunity and community 

variability decreased with trophic levels (0.75 to 0.54; see Appendix S1: Table S8 for detailed 

model statistics), the relationship between metacommunity variability and community synchrony 
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increased with increasing trophic level (0.30 to 0.73). Thus, in agreement with hypothesis H3b, 

the relationship between community synchrony and temporal variability in metacommunity 

aggregate abundance was strongest for predators. This result confirmed the expectation that 

communities that are more synchronous with one another tend to also be more temporally 

variable at the regional scale—but notably, the strength of this relationship depends on the 

trophic level being analyzed.  

 

DISCUSSION 

Our broad-scale investigation suggests that temporal variability in abundance decreases from 

producers to top consumers in freshwater ecosystems (H1), but that differences in temporal 

variability among trophic levels are smaller or absent at the regional metacommunity scale. 

These patterns were clear when we analyzed all datasets together but less consistent within 

datasets. These results suggest that the propagation of temporal variability across trophic levels 

was caused by a contrasting contribution of synchrony among populations within sites (local 

scale measure of synchrony) compared to the synchrony among communities across sites 

(regional scale measure of synchrony; H2). Because population synchrony generally increased 

from producers to tertiary consumers whereas community synchrony decreased from primary to 

secondary and tertiary consumers, general differences in variability among trophic levels were 

diminished from populations to metacommunities. While synchrony among populations within 

localities increased from producers to tertiary consumers, synchrony across localities decreased. 

Our analyses also confirmed that the associations between community synchrony and 

metacommunity variability was strongest for top consumers (H3b). However, in contrast to our 

expectation (H3a), the indirect effects of environmental variables on temporal variability at both 
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local and regional scales were generally consistent among trophic levels. Our results thus 

indicate that the trophic structure of metacommunities, which generally reflects organismal 

differences in body size and dispersal strength (Peters 1983), should be more explicitly 

accounted for when attempting to understand temporal ecological stability.  

The decrease in temporal variability from producers to tertiary consumers was not 

consistent from local populations to regional metacommunities, a result of variability and 

synchrony differing among trophic levels across the local and regional scales. Temporal 

variability can be expected to decrease with increasing organism body size in aquatic food webs 

at the local scale (Rip and McCann 2011). This decrease could occur if primary consumers tend 

to obtain most of their resources from either algae or detritus in freshwater ecosystems, whereas 

consumers at higher trophic levels tend to derive carbon from both sources, as suggested by 

Rooney et al. (2006). These coupled heterogeneous food webs differ in the amount of energy 

entering through basal resources and interaction strengths, which guarantees that top consumers 

have access to heterogeneous resources associated with asynchronous temporal dynamics 

originating at the base of local food webs (Rooney et al. 2006) – a mechanism widely recognized 

as a driver of stability (Schindler et al. 2015). However, an increase in temporal variability from 

producers to tertiary consumers is also expected (as described in our alternative H1’). For 

example, high growth rates of small organisms at lower trophic levels and their larger population 

sizes could also counter the effects of perturbations and demographic stochasticity (Lande 1993). 

These alternative hypotheses deserve future investigation through a combination of modeling 

and appropriate observational data.  

Interestingly, population and community variability of tertiary consumers was similar 

because fluctuations in abundances of tertiary species were highly synchronized. Populations of 
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higher trophic levels tend to congregate together on specific resource patches within 

metacommunities while they are profitable (Eveleigh et al. 2007), which may explain why we 

observed the highest levels of local population synchrony among tertiary consumers, a result also 

supported by microcosm research (Firkowski et al. 2022). The local synchronizing effect of top 

consumers appears to weaken along the trophic chain within communities, leading to lower 

population synchrony among primary consumers and producers.  

In contrast to species population synchrony, tertiary consumers exhibited the lowest 

levels of community synchrony. That is, temporal fluctuations in aggregate community 

abundance of top consumers were more desynchronized across localities. Top consumers will 

likely have asynchronous spatial dynamics at increasing spatial extents because switching among 

spatially separated resource patches by mobile predators occurs in response to spatial-temporal 

variation in resource densities (Rooney et al. 2008). The movement of top consumers from low 

prey density patches to more profitable high-density patches should also promote more spatially 

asynchronous fluctuations in resources, which should in turn decrease prey variability at the 

regional scale. Recent experimental evidence suggests that the extinction of a top predator led to 

more unstable communities due to an increase in synchrony of lower trophic levels caused by 

mesopredator pressure (Rezende et al. 2021). We thus suggest that top mobile predators can be 

seen as stabilizers of entire metacommunities.  

The local-scale SEM showed that community diversity dampened population synchrony 

and that this relationship was consistent among trophic levels. A recent meta-analysis reported 

strong support for the negative indirect effect of local diversity on community variability through 

population synchrony (Xu et al. 2021). More diverse communities tend to be more temporally 

stable due to two non-exclusive mechanisms, which our analysis cannot resolve. First, 
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fluctuations in the abundance of some species can be compensated for by fluctuations of other 

species due to biotic interactions or opposing responses to environmental variation, ensuring 

aggregate ecological properties are more stable through time (Gonzalez and Loreau 2009). 

Second, statistical averaging among species that fluctuate independently through time may also 

lead to a similar pattern of ‘risk dampening’ (Schindler et al. 2015). Interestingly, the positive 

relationship between population synchrony and aggregate community variability, which 

mediated the indirect negative relationship between diversity and community variability, was 

also consistent among trophic levels. Thus, by considering both direct and indirect paths, we 

suggest that the influence of total local diversity on aggregate community variability may be 

independent of horizontal diversity (i.e., diversity within trophic levels).  

Similarly, the path linking variability in precipitation to population variability was 

consistent among trophic levels. Variability in precipitation weakly increased population 

variability. More seasonal environments may have species more adjusted to the timing of 

environmental events compared to locations with less predictable seasonality (Tonkin et al. 

2017). However, the path linking variability in precipitation to community variability varied 

among trophic levels. While there was no apparent relationship between those variables for 

producers and primary consumers, there was a modest relationship for top consumers. Thus, our 

results suggest that populations are more temporally variable among years in more variable 

environments, but that the manner in which variability in precipitation indirectly and directly 

relates to community- level variability depends on species trophic level. The range of responses 

of different trophic levels is likely explained by the fact that the life histories of organisms are 

shaped by the frequencies of environmental fluctuations that roughly match, but are not much 

longer than, organismal generation times (Lytle 2001).  
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Our results are consistent with hypothesis H3b, as we found that the strength of the 

relationship between metacommunity variability and community synchrony increased from 

producers to tertiary consumers. Synchrony across sites is the scaling factor that determines the 

amount of variability that propagates from the community to the metacommunity level (Mv = Cv 

x Csy; Wang et al. 2019). Thus, the stronger relationship between metacommunity variability 

and community synchrony for tertiary consumers indicates their variability at the regional level 

was more strongly influenced by synchrony than for other trophic levels. This result could also 

explain why differences in temporal variability among trophic levels at the local scale almost 

disappeared at the regional scale. In contrast to hypothesis H3b, however, neither synchrony in 

precipitation nor spatial connectivity played a role as a driver of community synchrony. This 

result is surprising because evidence supporting the influence of the Moran effect on the 

dynamics of freshwater ecosystems has been accumulating recently. For example, flow 

management for hydropower can spatially synchronize invertebrate metacommunities along 

regulated sections of dammed rivers, benefiting species better adapted to fast flows (Ruhi et al. 

2018). Similarly, drought can lead to regional quasi-extinction of species with lower resistance 

and resilience abilities by synchronizing stream metapopulations (Sarremejane et al. 2021). We 

cannot discard, however, that the lack of relationship between community synchrony and 

environmental predictors was due to the use of coarse climatic variables only. For example, 

ecosystem productivity is a key driver of ecological stability (i.e., paradox of enrichment; 

Rosenzweig 1971). Overall, considering results both from metacommunity partitioning analyses 

and two-scale SEMs, we suggest that the ability of mobile consumers to move across patches 

may sometimes counteract the effects of environmental variation on population variability, and 

of environmental synchrony on community synchrony (Rooney et al. 2008).         
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We built our conceptual model focusing on paths supported by theory as representations 

of causal relationships. For example, we did not link metacommunity variability, indirectly 

through community synchrony, or directly, to spatial beta-diversity. While some previous studies 

have suggested that high beta-diversity can cause low synchrony among communities (Wang and 

Loreau 2016), others have suggested that temporal turnover (a form of temporal variability) 

drives spatial beta-diversity (Steiner and Leibold 2004). Others have suggested this relationship 

may be caused by pure sampling effects (Stegen et al. 2013). We suspect spatial and temporal 

turnover and community synchrony are all consequences of an interaction among environmental 

forcing, the various forms of stochasticity, and dispersal (Leibold and Chase 2018), and that they 

likely represent different facets of temporal stability (Lamy et al. 2021). Thus, we built our 

conceptual model focusing on paths supported by theory as representations of causal 

relationships. A second caveat is that our analyses were based on annual observations only, and 

organisms in different trophic levels tend to differ in lifespan and generation times—from days 

or weeks (e.g., planktonic organisms) to years (fishes). Even though there was no statistical 

interaction between number of generations and trophic levels as determinants of variability and 

synchrony metrics at any scale, the number of time series for producers was low compared to the 

other trophic groups, and some time series were short. Thus, given that generation time and 

trophic position are generally correlated, we cannot completely rule out that temporal variability 

was not underestimated for species with long generation times relative to the data series. A third 

potential caveat is the scarcity of datasets comprising three or more trophic levels. We addressed 

this caveat by analyzing temporal variability and synchrony within datasets that included more 

than one trophic level and found that the general patterns observed with the full data hold. Thus, 

these relationships seem to be real, and not an artifact resulting from variation in sampling 
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methods. We urge, however, efforts to prioritize sampling or collation of time-series data on 

complete food webs.  

 Our study has implications for understanding temporal variability in multitrophic 

metacommunities and for how ecological stability may be influenced by environmental change. 

We showed that temporal variability in abundance, one of the facets of temporal stability, 

decreases from producers to top predators across levels of biological organization, but that 

differences among trophic levels tend to equalize at the regional scale. Given that species at 

higher trophic levels are more susceptible to extinction than species at lower trophic levels (Estes 

et al. 2011) and that environmental change tends to increase environmental homogeneity (Ellis 

2021), the propagation of stability across spatial scales and trophic levels cannot be taken for 

granted. Our work advances the notion that temporal stability is an emergent property of 

ecosystems that may be threatened in complex ways by both human and climate-driven 

biodiversity loss. 
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Figure captions 

Figure 1. Spatial and trophic propagation of temporal variability (a) and synchrony (b). Plots 

with distinct colors represent the distribution of values as a density shape of aggregated 

variability or synchrony at the population, community and metacommunity levels. The overall 

median value per plot is represented by the solid line. Raw data values are shown inside each 

density shape. Statistics describing specific pairwise contrasts corrected for multiple 

comparisons to compare trophic levels are available in Appendix S1: Table S2 and S4. Specific 

pairwise contrasts that do not differ are indicated by colored numbered letters (e.g., a1, a2, etc.). 

Plots not associated with numbered letters are statistically different from each other and from 

those associated with numbered letters. Trophic levels include producers and primary, secondary, 

and tertiary consumers. 

 

Figure 2. Spatial and trophic propagation of temporal variability (a) and synchrony (b) within 

metacommunities with more than one trophic level. Dots represent average variability or 

synchrony per metacommunity. Line types indicate the number of trophic levels monitored in 

each metacommunity: dotted lines indicate metacommunities with primary to tertiary consumers 

(n = 2); dashed lines indicate metacommunities with primary to secondary consumers (n = 7); 

and solid lines indicate metacommunities with secondary to tertiary consumers (n = 13). Paired t-

tests do not differ are indicated by colored numbered letters (e.g., b1, b2, etc.; Appendix S1: 

Table S3). Plots not associated with numbered letters are statistically different from each other 

and from those associated with numbered letters. Color legend is as in Figure 1. 
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Figure 3. Results of multigroup structural equation models (SEM) at local and regional scales 

(separated by the horizontal gray dashed line). Dashed and solid arrows indicate relationships 

associated with p < 0.05 and > 0.05, respectively. Colored lines represent relationships that 

varied among trophic groups. The numbers associated with the lines represent SEM linear 

standardized coefficients. Local-scale SEM (n = 501; Fisher’s C = 3.376, df = 4, P-value = 0.49). 

Regional-scale SEM (n = 49; Fisher's C = 9.31; P-value = 0.16; df = 6). Detailed description of 

all statistics is given in Appendix S1: Table S5 and S7. 
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